Combined genomic and epigenomic assessment of cell-free circulating tumor DNA (ctDNA) improves assay sensitivity in early stage colorectal cancer (CRC)

Seung-Tae Kim, MD PhD, Victoria M. Raymond MS, Joon Oh Park MD PhD, Elena Zotenko PhD, Young Suk Park MD PhD, Matthew Schultz PhD, Won Ki Kang MD PhD, Oscar Westesson PhD, Hee-Cheol Kim MD PhD, Yupeng He PhD, Justin I. Odegaard MD PhD, Stefanie A. Mortimer PhD, William J. Greenleaf PhD, Ariel Jaimovich PhD, Jeeyun Lee MD PhD, and AmirAli Talasaz, PhD

American Association for Cancer Research 2019 Annual Meeting
March 31, 2019
Disclosures

Employee, Director, and Shareholder of Guardant Health, Inc.
ctDNA has the potential to identify patients with early stage cancer, but accurate detection is challenging

Detection Challenges

Sensitivity
- Genomic signatures are limited to ~50% sensitivity for early cancer

Specificity
- Non-tumor sources of biological noise, such as CHIP, can compromise highly specific detection
- Using prior knowledge of tumor tissue to filter out such noise is clinically challenging
Diverse sources of signal motivate multimodal analysis of ctDNA

Genomic Alterations
- SNVs, InDels, Fusions, and CNVs

Epigenomic Alterations
- Aberrant methylation signals in tumor vs benign tissues

Nucleosomal Positioning & Fragmentomics
- ctDNA has differential fragment genomic position via nucleosomal positioning or epigenomic alterations at transcription factor binding sites

ctDNA fragment genomic position provides biological information

Nucleosomal (long) fragments

Sub-Nucleosomal (short) fragments

TSS: Transcription Start Site
CTCF: a DNA binding protein that binds to tens of thousands of genomic sites, some tissue-specific and others ultra-conserved

Integrated genomic and epigenomic analysis of ctDNA

- Methylation & Fragmentomics
- Genomic Alterations
- Signal processing
- Biological Noise Filter
- ctDNA detection

Diagram:
- Methylated cfDNA
- Non-Methylated cfDNA
- Digital Sequencing
- Sequence
- Target capture
- 500kb Panel
- 80,000 low-coverage WGS
- advanced cancer liquid biopsy
- ctDNA
- Whole Genome Sequencing

Reference:
Multi-modal epigenomics approach integrating methylation and fragmentomics improves signal-to-noise.

Accurate testing cohort required age-matched cases and controls

- 105 patients with a diagnosis of colorectal cancer had plasma collected prior to surgical resection
 - From three independent cohorts
- Cancer-free controls were age-matched
 - Median age was 67 years, consistent with the median age at colorectal cancer diagnosis per SEER Data
 - 8% had a diagnosis of inflammatory bowel disease

<table>
<thead>
<tr>
<th></th>
<th>Median age (in years)</th>
<th>Range (in years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancer Free Controls</td>
<td>67</td>
<td>35 - 88</td>
</tr>
<tr>
<td>Stage I</td>
<td>65.5</td>
<td>49 - 70</td>
</tr>
<tr>
<td>Stage II</td>
<td>63</td>
<td>45 - 85</td>
</tr>
<tr>
<td>Stage III</td>
<td>62</td>
<td>42 - 88</td>
</tr>
<tr>
<td>Stage IV</td>
<td>59</td>
<td>53 - 67</td>
</tr>
</tbody>
</table>

Inferred tumor level correlates between epigenomic and genomic estimate.

Promising ctDNA sensitivity and specificity for early stage CRC

<table>
<thead>
<tr>
<th>Stage</th>
<th>Genomic Sensitivity</th>
<th>Genomic Specificity</th>
<th>Integrated Sensitivity</th>
<th>Integrated Specificity</th>
<th>Genomic & Epigenomic Sensitivity</th>
<th>Genomic & Epigenomic Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>44%</td>
<td>84%</td>
<td>44%</td>
<td>84%</td>
<td>84%</td>
<td>84%</td>
</tr>
<tr>
<td>II</td>
<td>56%</td>
<td>90%</td>
<td>56%</td>
<td>90%</td>
<td>56%</td>
<td>90%</td>
</tr>
<tr>
<td>III</td>
<td>56%</td>
<td>95%</td>
<td>56%</td>
<td>95%</td>
<td>56%</td>
<td>95%</td>
</tr>
<tr>
<td>IV</td>
<td>75%</td>
<td>100%</td>
<td>75%</td>
<td>100%</td>
<td>75%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Sensitivity and Specificity for Stages I to IV with target specificities of 90%, 95%, and 98%.
Summary and Next Steps

- Utilizing a **plasma-only** sequencing assay incorporating **somatic genomic and epigenomic analysis**, and a bioinformatic classifier to filter non-tumor derived variants, ctDNA detection rate in early stage CRC (I-III) can far **outperform** the detection rate of somatic sequence variant detection alone.

- The performance of the ctDNA assay needs to be further validated in larger cohorts.

- In a subgroup of patients, longitudinal ctDNA samples were collected and clinical follow-up is ongoing to evaluate post-surgery ctDNA detection rate and disease recurrence.

- These results have potentially significant implications for the clinical utility of ctDNA in early stage cancer management.

Acknowledgements

• Patients and Providers who collaborated on this research

• Investigators at Samsung Medical Center in South Korea